Table of photon mechanics

Natural potential:,
Operator(s)*:Wavelength operator, ratio of Planck length to de Broglie wavelengthWavelength operator, ratio of Planck length to de Broglie wavelength Dimensionless proportionality operator, ratio of speed of light to speed of lightDimensionless proportionality operator, 1 Wavelength operator, ratio of Planck length to de Broglie wavelength Dimensionless proportionality operator, ratio of speed of light to speed of light
Observable:,
Natural formula:𝑙𝑃 / Ξ²πœ†Ξ²πœ† π‘šπ‘ƒπ‘‘π‘ƒ / Ξ²πœ†Ξ²πœ† 𝑝𝑃𝑑𝑃 / (Ξ²πœ† β𝑣)β𝑠 Ξ²πœ† β𝑣 𝐸𝑃—
Equivalent historical formula:ℏ / π‘š0𝑣ℏ / ƛ𝑐ƛ / 𝑐ℏ / Ζ›Ζ› / 𝑐𝑣ℏ𝑐 / Ζ›β€”
Photondimensionlessmkgskgms-1skgm2s-2kgm
ƛ𝑃11.62 x 10-352.18 x 10-85.39 x 10-446.525.39 x 10-441.96 x 1093.52 x 10-43
ƛ𝐢, 𝜏1.46 x 10-191.11 x 10-163.17 x 10-273.70 x 10-259.50 x 10-193.70 x 10-252.85 x 10-103.52 x 10-43
ƛ𝐢, πœ‡8.65×10-211.87 x 10-151.88 x 10-286.23 x 10-245.65 x 10-206.23 x 10-241.69 x 10-113.52 x 10-43
ƛ𝐢 4.19×10-233.86 x 10-139.11 x 10-311.29 x 10-212.73 x 10-221.29 x 10-218.19 x 10-143.52 x 10-43
Ζ›1𝑠-2𝑝1.33 x 10-281.22 x 10-72.89 x 10-364.06 x 10-168.67 x 10-284.06 x 10-162.60 x 10-193.52 x 10-43
Ζ›, Δ𝑣𝐢𝑠4.96 x 10-343.26 x 10-21.08 x 10-411.09 x 10-103.23 x 10-331.09 x 10-109.69 x 10-253.52 x 10-43

* The table shows the length form of the wavelength operator but mass and time forms can also be used

Formulas in the table are the same for particles with and without rest mass